
Supplementary Material
SyDog: A Synthetic Dog Dataset for Improved 2D Pose Estimation

Moira Shooter Charles Malleson Adrian Hilton
University of Surrey

Stag Hill, University Campus, Guildford GU2 7XH
{m.shooter,charles.malleson,a.hilton}@surrey.ac.uk

1. Data Generation
Figure 1 shows some example images from the SyDog

dataset.

2. Training Set Up
We used a GeForce RTX 2080 Ti for training. The code

was implemented with Pytorch Lightning [1]. In this paper
we focus on the usage of synthetic data and not the archi-
tecture design therefore we trained a 2-Stacked Hourglass
network with 2 blocks (2HG), an 8-Stacked Hourglass net-
work with 1 block (8HG) and a pre-trained Mask R-CNN
model with a ResNet50 as a backbone from the TorchVi-
sion library. For 2HG and 8HG RMSprop was used as an
optimiser with a learning rate set to 1× 10−3 and for the
Mask R-CNN we also used an RMSprop but with a learn-
ing rate set to 1× 10−5. The batch size was set to 32 for the
stacked hourglass networks and 16 for the Mask R-CNN,
although when the networks were trained with the mixed
dataset, which consists of both real and synthetic samples,
the batch size was set to 8, 4 of which were real samples
and 4 of which were synthetic samples. We applied early
stopping to our networks, the networks stop training when
the validation does not improve for 10 epochs. The model is
saved when there is an improvement in the validation loss.
Originally the loss function for the stacked hourglass net-
work would be the mean squared error between the ground
truth xi and all the heatmaps generated by the network yi
but because we only care about the visible keypoints, we
modified the loss function by multiplying the keypoints’
ground truth visibility vi with the squared error such that
only the visible keypoints contribute to the loss function.

MSEmasked =
1

n

n∑
i=1

vi(yi − xi)
2, vi = 0, 1 (1)

For the Mask R-CNN’s loss function we sum the classifica-
tion, regression and keypoint loss which our returned by the
Mask R-CNN during training.

Learning rate PCK ↑ (%) MPJPE ↓ (%)
1× 10−5 50.77 20.03
1× 10−6 46.58 21.17
1× 10−7 44.87 22.53
1× 10−8 41.32 22.53
1× 10−9 39.68 23.74

Table 1: Pose estimation results from the Mask R-CNN
on the StanfordExtra test dataset when fine-tuned with a
smaller learning rate. The performance is evaluated using
the percentage of correct keypoints (PCK) with a threshold
set to 0.1 and the mean per joint per error (MPJPE) which
are both normalised w.r.t. the length of the ground truth
bounding box diagonal.

In order to train the stacked hourglass network we rep-
resented the joints as 2D heatmaps. The ground truth
heatmaps are produced by generating 2D Gaussians with a
standard deviation (std) of 3 pixels centered at the joint’s lo-
cation. The stacked hourglass network takes 256x256 RGB-
images as input and returns 25 heatmaps of size 64x64. Be-
cause the StanfordExtra dataset contains different sized im-
ages, it was necessary to resize them to 256x256; there was
no need to resize the synthetic images as they were gen-
erated to be size 256x256. To train the Mask R-CNN the
joints were represented as a list containing the joint’s co-
ordinates and visibility. The Mask R-CNN takes 256x256
images as input and returns the predicted bounding boxes,
labels, scores of each prediction and the locations of the
predicted keypoints. Before feeding the data to the net-
works, we made sure that each pixel had the same similar
data distrubtion by normalizing the data. The StanfordEx-
tra dataset was normalised with a mean=[0.4822, 0.4621,
0.3972] and a std=[0.2220, 0.2172, 0.2167]; while the Syn-
theticDog dataset was normalised with a mean=[0.6528,
0.4980, 0.5418] and a std=[0.1827, 0.1970, 0.1946].

1



Figure 1: Examples of the SyDog dataset. The data is made varied using different lightning conditions (post-process effects),
environments, dog’s appearance and camera viewing points.

(a) Bar graph of the percentage of correct keypoints (PCK) between
various pose estimation models and training data.

(b) Bar graph of the mean per joint per error (MPJPE) between various
pose estimation models and training data.

Figure 2: Quantitative comparison on StanfordExtra test
dataset for the 2HG, 8HG and Mask R-CNN trained purely
on real data, fine-tuned with real data and trained with the
mixed dataset.

3. Experiments and Results

Table 1 shows the pose estimation results from the Mask
R-CNN when fine-tuned with smaller learning rates.

References
[1] WA Falcon and .al. Pytorch lightning. GitHub. Note:

https://github.com/PyTorchLightning/pytorch-lightning, 3,
2019. 1

2



Figure 3: Qualitative comparison on StanfordExtra between the N-stacked hourglass networks trained purely on real data,
fine-tuned with real data and trained with the mixed dataset. The ground truth (green) and predicted (yellow) pose with the
mean per joint per error (MPJPE) are displayed.

3


