

1. Introduction

Motivation: Estimating the pose of animals from video helps to understand the animal motion and this supports many applications and disciplines such as:

- Veterinary sciences
- **Biomechanical applications**
- Neuroscience
- Robotics
- The entertainment industry

Problem: There is a lack of animal pose datasets. Manually annotating several keypoints in thousands of images is both labour intensive and expensive.

Question: Can synthetic data improve 2D pose estimation models?

2. Data generation

- Generated image data of dogs in the game engine, Unity3D based on [Zhang et al. 2018]
- > 8 dogs (3D models), 12 fur textures, 1k background images, 10 terrain textures, randomized light and camera settings
- Output: Images + 2D joint locations and bounding box coordinates

Input

Environment samples

Models

Texture samples

Keyboard inputs control the animation (walk/run, jump, sit)

Samples from SyDog dataset

SyDog: A Synthetic Dog Dataset for Improved 2D Pose Estimation

Moira Shooter Charles Malleson Adrian Hilton Center of Vision, Speech and Signal Processing (CVSSP), University of Surrey, UK {m.shooter, charles.malleson, a.hilton}@surrey.ac.uk

3. Experiments

Output

> Output: heatmap for each keypoint

Mask R-CNN [He et al. 2017]

- > Input: RGB Image
- > **Output**: keypoint coordinates instead of segmentation masks

Bridging the domain gap (synthetic vs real)

- Fine-tuning the networks trained with pure synthetic data with real data
- Training the networks with a mixed dataset (synth+real)

4. Results on SyDog [Ours]

Network	PCK (%)	MPJPE (%)
2HG	77.76	6.51
8HG	77.57	6.56
Mask R-CNN	68.98	11.02

Table 1: PCK@0.1 and MPJPE results from the 2-and 8stacked hourglass network (2HG, 8HG) and the Mask R-CNN on the SyDog dataset

Evaluation Metrics

- Percentage of Correct Keypoints (PCK), at 10% of bounding box diagonal
- Mean Per Joint Position Error (MPJPE) w.r.t. bounding box diagonal

4. Results on StanfordExtra [Biggs et al. 2020]					
Network	Dataset	Learning rate	PCK (%) ↑	MPJPE (%) ↓	
2HG	Real	0.001	68.61	15.84	
	Synthetic	0.001	16.20	46.26	
	FT	$0.001 \rightarrow 0.001$	76.57	11.80	
	FT	$0.001 \rightarrow 0.000001$	77.19	11.32	
	Mixed@0.1	0.001	63.14	19.08	
	Mixed@0.5	0.001	68.43	15.50	
	Mixed@1.0	0.001	70.46	14.76	
8HG	Real	0.001	68.90	15.64	
	Synthetic	0.001	17.34	45.08	
	FT	$0.001 \rightarrow 0.001$	78.31	11.47	
	FT	$0.001 \rightarrow 0.00001$	78.65	11.19	
	Mixed@0.1	0.001	65.04	17.81	
	Mixed@0.5	0.001	71.76	15.19	
	Mixed@1.0	0.001	72.09	14.97	
Mask R-CNN	Real	0.00001	43.60	21.58	
	Synthetic	0.001	13.22	37.49	
	FT	$0.00001 \rightarrow 0.00001$	50.77	20.03	
	FT	$0.00001 \rightarrow 0.000001$	46.58	21.17	
	Mixed@0.1	0.001	41.27	22.82	
	Mixed@0.5	0.001	47.71	21.64	
	Mixed@1.0	0.001	45.77	21.61	

Table 2: PCK@0.1 and MPJPE results from the 2-and 8-stacked hourglass network (2HG, 8HG) and the Mask R-CNN trained solely on (Real) and solely on the SyDog dataset (Synthetic) together with the fine-tuned (FT) models and the models trained with a mixed dataset (Mixed@fraction).

- containing dogs
- bounding box coordinates
- motion control. ACM Trans. Graph., 37(4), July 2018.
- CoRR, abs/1603.06937, 2016.
- 2017.

CV4Animals Workshop

5. Conclusions

> We presented a real-time system that generated 2D annotated images

> We release SyDog, a large-scale dataset of dogs with 2D keypoints and

> We demonstrated that using the SyDog dataset improves the accuracy of pose estimation models and reduces the need for labour intensive labelling

References

> He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive neural networks for quadruped

> Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estimation.

> Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. CoRR, abs/1703.06870,

> Benjamin Biggs, Oliver Boyne, James Charles, Andrew Fitzgibbon, and Roberto Cipolla. Who left the dogs out?: 3D animal reconstruction with expectation maximization in the loop. In ECCV, 2020.